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Abstract

EÆcient world trade requires that manufacturers in
one country have con�dence that their product will
meet speci�cations that are veri�ed by purchasers
in another country. But these trading partners rely
upon di�erent national metrology laboratories to cal-
ibrate their equipment, and there is measurable di-
vergence between their instruments. This paper de-
scribes statistical methods that enable one to use
data from a network of key comparisons to estimate
the measurement functions at each participating lab-
oratory. These methods cannot determine which lab-
oratory is most accurate, but do allow one to predict
the value that a given laboratory would obtain on an
artifact from the value measured at another labora-
tory in the comparison network.

Introduction

International trading partners want to have con�-
dence that their measurements on shipped goods will
substantially agree. But the supplier and purchaser
use di�erent national metrology laboratories to cal-
ibrate their measurement instruments, and there is
small but detectable drift across the measurement
chain that connects the partners. It would be helpful
if the supplier could accurately forecast the measure-
ments that the purchaser will obtain when the deliv-
ered product is tested. To support this, we develop
statistical theory to equate laboratories based upon
sets of artifacts measured by two or more laboratories
in the calibration chain.

Metrology laboratories regularly calibrate them-
selves against each other by obtaining measurements
upon the same artifact. Assuming that transporta-
tion does not a�ect the true value for the artifact,
then any two laboratories are linked by a chain
(or, more accurately, a network) of key comparisons
which, up to noise, should agree. These data provide
the basis for a statistical analysis that can track small
drifts across intermediate links, allowing the supplier
to predict the values that will be measured by the
purchaser.

This problem of equating laboratories can be for-
mulated either in frequentist or Bayesian terms. Both
approaches are described below, and the qualita-
tive di�erences are discussed. We note that our
comparison focuses on the simplest practical anal-
ysis in each case|both inferential methods can be
made more complex and more realistic. We sug-
gest that such analyses be instantiated in a soft-
ware program to be called MENSOR (Measurement
Equivalence from National Standards and Observed
Relationships), and made available on the World-
Wide Web using Java applets to ensure con�dential-
ity about measurement capability at individual lab-
oratories.

Frequentist Analysis

Suppose there are I measurement laboratories and
J reference artifacts.

Artifact j is measured nij times by measure-
ment laboratory i, producing observations Yijk for



k1; : : : ; nij . We assume the model

Yijkfi(�j) + �ijk

where �j is the unknown true value for the jth refer-
ence artifact, fi is an unknown smooth function (in a
sense made precise later) for the ith laboratory, and
the �ijk are independent N(0; �2ij) random variables
(so measurement error variability depends upon both
the laboratory and the artifact; this happens, for ex-
ample, with chemical assays, where precision depends
upon the concentration of the analyte).
One would like to estimate the measurement func-

tion fi for each laboratory, as this would enable one
to estimate the true value �j for each artifact. But
the problem is ill-posed; e.g., the fi function includes
the bias, which is impossible to recover from data.
Fortunately, one doesn't need to know true values in
order to solve the simpler problem of predicting an-
other laboratory's results.
The �rst issue is to model the fi. Metrology sci-

entists rarely have more than ten reference artifacts
measured in common between any pair of laborato-
ries. Given these small sample sizes, one cannot do
more than �t a low-order polynomial, such as the
simple linear regression model

IE[Y �

i ]fi(�)�i + �i�
� (1)

where Y �

i is a measurement made at the ith labora-
tory on an artifact with true value ��. In rare cases,
one might have enough data to warrant second-order
polynomial regression, �tting the model

IE[Y �

i ]fi(�)�i + �i�
� + i�

�2:

Higher-order polynomials require large numbers of
reference artifacts. Forecasts for new artifacts whose
values lie outside the range of the reference artifacts
will have large uncertainties.
As an alternative to linear or polynomial �tting,

one could use nonparametric regression, but this re-
quires enormous numbers of reference artifacts to
be measured in common. Kolen and Brennan [4]
describe such work in the context of educational
testing|here the reference artifacts are students, so
large samples are available from test piloting exer-
cises.

The relation in (1) is called Mandel's bundle-of-
lines model [6], which is used to test for interaction
in two-way layouts without replicated observations
(it generalizes Tukey's one-degree-of-freedom test for
nonadditivity). Our application is somewhat di�er-
ent, in that:

1. Many cells in the two-way layout have no obser-
vations (i.e., there are incomplete blocks).

2. When a cell does contain an observation, that
measurement is usually replicated.

We use the bundle-of-lines model to estimate rela-
tions between the approximate measurement func-
tions at the di�erent laboratories, instead of as a test
for interaction.
One consequence of use of the bundle-of-lines

model in our application is that some parameters are
not estimable. In particular, one can neither esti-
mate the true value �j of an artifact nor the linear
function for the ith laboratory. However, one can
usually estimate contrasts between, say, the manu-
facturer's laboratory and the purchaser's laboratory,
which is suÆcient for forecasting purposes. The only
case in which contrast estimates cannot be made is
when there is no chain of laboratories, linked by key
comparisons on common reference artifacts, between
the two laboratories. Usually, there is not merely a
chain, but rather a network of measurements, and
the bundle-of-lines model automatically pools infor-
mation from all possible paths linking one laboratory
to another.
Frequentist Analysis: Example
Because of the product term �i�j in (1), Man-

del's bundle-of-lines model is not a traditional linear
model|the product prevents representation of the
measurement as a simple sum of unknowns. There-
fore the model

Yijk�i + �i�j + �ijk

is traditionally estimated in two steps.
To illustrate the details, consider a two-way lay-

out for four laboratories and eight reference artifacts,
with two replications for each measurement. The ex-
ample in Table 1 was constructed by taking the index
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of the artifact as the value of the artifact (thus the
jth artifact has value j), and the measurement func-
tions for the four laboratories as f1(�)1+�, f2(�)2�,
f3(�)3+�, and f4(�)�1+3�. Measurement errors are
independent N(0; :01) random variables. Although
no reference artifacts are measured in common by
Laboratories 1 and 4, one might want to predict the
measurement Laboratory 4 would obtain on an arti-
fact from the value found at Laboratory 1.

Laboratories
Artifacts 1 2 3 4

(2) (2)
1 2.2 1.9

1.9 2.1
(3) (4)

2 3.0 4.1
3.0 4.1
(4) (6)

3 3.9 5.9
4.0 6.0
(5) (7)

4 5.0 7.0
5.1 6.9

(10) (14)
5 10.0 13.9

10.0 13.9
(12) (17)

6 11.9 17.1
12.0 17.0

(10) (20)
7 10.1 19.9

10.1 20.1
(11) (23)

8 11.0 23.0
11.1 23.1

Table 1: Example of key comparison data.

Following Milliken and Johnson [6], the two steps
in estimating the parameters for a bundle-of-lines
model are to:

1. �t the additive model IE[Yijk ]m+ �i + j .

2. calculate the residuals rijk from the additive
model, and �t the model rijkÆîj + �ijk .

Some additional calculation is needed to obtain the
most useful �nal form, as written in (1).
Applying this algorithm to the data in Table 1,

the �rst step produces (among other output) the esti-
mated �j values and associated uncertainties. These
estimates are not unique|the values shown are ob-
tained under the constraint that the largest �j is set
to zero. SAS �nds the estimated artifact e�ects are
�̂1 � 11:800, �̂2 � 10:275, �̂3 � 7:619, �̂4 � 6:569,
�̂5�6:356, �̂6�3:806, �̂7�2:000, and (by constraint)
�̂80:000. These estimates are recentered about their
mean, then used as explanatory variables in the sec-
ond step which �ts the model (1) to produce esti-
mates of the laboratory intercepts and slopes, with
associated uncertainties. These estimates are also
non-unique, since they depend upon the artifact ef-
fects.
In examining the results, it is clear that the �tted

model provides poor description, and is especially de-
�cient in forecasting results for the unobserved com-
binations of laboratories and artifacts. This is caused
by the incomplete block design, which confounds the
artifact e�ect with the interaction (product term),
preventing proper extraction of the �̂j terms needed
for regression on the residuals.
The problem lies in the �tting algorithm, not in

the model. To avoid the diÆculty, we use direct least
squares optimization to �nd the coeÆcients for the
fi in the Mandel bundle-of-lines model. Additionally,
one wants con�dence bounds on these estimates, and
for that we use the jackknife technique (cf. Efron [1]).
This is an approximate method, and tighter bounds
could be obtained with somewhat more work. The
jackknife estimate of standard error is

V̂ar[Ŷij ]
n� 1

n

X
i0;j0;k

(Ŷ(i0;j0;k) � Ŷij)
2

where Ŷij is the estimate obtained from the least
squares optimization using the entire dataset, and
Ŷ(i0;j0;k) is the estimate obtained by applying least
squares optimization to all of the dataset except for
observation k from laboratory i0 on artifact j0. Es-
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sentially, we use the average instability in the pre-
diction, under deletion of each observation in turn,
as an estimate of the variance in the forecast. Since,
by design, certain observations are highly inuential,
this approach overstates the real uncertainty.

The results of these calculations for the data in
Table 1 are shown in Table 2. The parenthetical
entry in each cell is the true value, the next entry
is the predicted value, and the following two entries
are lower and upper 95% con�dence bounds on the
predicted value, respectively. The predicted values
are very close to the true values, but the con�dence
bounds are often unfortunately wide, especially in
laboratory-artifact combinations for which no obser-
vations are available.

Laboratories
Artifacts 1 2 3 4

(2) (2) (4) (2)
1 2.01 2.02 3.91 0.95
L 1.71 1.76 3.42 -1.72
U 2.31 2.29 4.40 3.62

(3) (4) (5) (5)
2 3.06 4.07 4.99 4.27
L 2.93 3.99 4.62 2.23
U 3.19 4.15 5.36 6.32

(4) (6) (6) (8)
3 3.98 5.86 5.93 7.18
L 3.86 5.37 5.79 5.40
U 4.10 6.36 6.06 8.95

(5) (8) (7) (11)
4 5.01 7.89 6.99 10.46
L 4.86 7.26 6.84 8.94
U 5.16 8.52 7.13 11.98

(6) (10) (8) (14)
5 6.10 10.01 8.10 13.90
L 5.47 9.89 7.79 13.81
U 6.72 10.12 8.41 13.98

(7) (12) (9) (17)
6 7.10 11.95 9.12 17.05
L 6.28 11.78 8.88 16.88
U 7.91 12.12 9.36 17.22

(8) (14) (10) (20)
7 8.03 13.78 10.08 20.01
L 7.03 13.12 10.00 19.75
U 9.03 14.43 10.16 20.27

(9) (16) (11) (23)
8 8.99 15.65 11.06 23.05
L 7.76 14.74 10.97 22.91
U 10.22 16.56 11.15 23.19

Table 2: Estimates from the bundle-of-lines model.

To improve the uncertainty statements, one could
use a linearization argument (i.e., Taylor's theorem
in the traditional propagation of error technique), or
make direct assumptions on the structure of the er-
ror covariance matrix. In this case, it is reasonable
and realistic to exploit the fact that all measurement
errors have the same (unknown) standard deviation,
which is not used in the jackknife calculation, but
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which could be easily implemented in a parametric
bootstrap analysis (cf. Efron [2]).
Bayesian Analysis
A Bayesian analysis requires one to place a prior

distribution over the unknown parameters. This
prior should incorporate expert knowledge, but not
force the outcome. In that spirit, we tend to use
vague priors (e.g., maximum entropy priors, as advo-
cated by Weise and W�oger [8] for metrology appli-
cations), but recognize that high precision metrology
can take honest advantage of unusually concentrated
error distributions and prior physical knowledge.
For the Bayesian formulation, it is convenient to

rewrite (1) in matrix form:

Y X� + �:

Here Y is the n � 1 vector of observations Yijk ,
for nn::, the number of measurements at all lab-
oratories on all reference artifacts; X is the
n � 2I design matrix whose row corresponding
to observation Yijkcontainszeroesexceptforthe2i-
1stand2ithcolumns;whichare1and�j, respectively;
and � is the n� 1 vector of measurement errors.
A Bayesian analysis requires as input prior beliefs

about the distributions
of the unknown quantities|usually this is obtained

from experts. In this application, we use the following
notation and models for those prior beliefs:

1. The prior on X is denoted by �(X). This is
a degenerate distribution, since only the �j val-
ues of the artifacts (which appear in the even-
numbered columns of the X matrix) are un-
known. Thus we assume that �(X) is a matrix-
valued normal distribution that is entirely spec-
i�ed by the random vector � � N(m;D), a
non-degenerate normal distribution. It is rea-
sonable to assume that the covariance matrix D
is diagonal, since the true values of the artifacts
should be independent of one another. The ex-
pert's opinion determines m and the the diago-
nal entries of D.

2. The prior on � is denoted by �(�). It is usu-
ally reasonable to take �(�)N(b;B). In most
metrology applications, an expert would assume

b(0; 1; 0; 1; : : : ; 0; 1)T, since the intercept and
slope in the measurement function for each com-
petent laboratory should be very close to 0 and
1, respectively. Similarly, the covariance matrix
B would probably have the block-diagonal form
� diag(B1; : : : ;BI), so that the judgments on
slope and intercepts are independent for di�erent
laboratories, but scaled by an overall uncertainty
captured by � . (In a more athletic analysis, one
would place a hyperprior over � , but that level
of detail is not crucial.)

3. The distribution of the error is denoted by  (�).
Usually one would model this as a N(0;�) dis-
tribution,

where the mean indicates unbiased errors and �
is diagonal or block-diagonal, probably scaled by
an overall uncertainty � as above. The covari-
ance matrix� can and should model magnitude-
dependent precision, or correlation among re-
peated measurements on the same artifact at the
same laboratory.

It is realistic to assume that each of the unknowns
is independent of the others, provided that the prior
on � properly models laboratory and artifact e�ects
(i.e., site-dependent or magnitude-dependent preci-
sion, which can be well-captured by �).
The usual Bayesian linear model (cf. Lindley and

Smith [5]) takes the X matrix to be measured with-
out error, and assumes that only the � vector re-
quires a prior. But in metrology, both X and � are
unknown, and require explicit priors. This leads to
a high-dimensional integral whose solution is usually
impractical. But two alternatives are available; the
�rst relies upon Gibbs sampling, and the second uses
a conjugate normal approximation.
Bayesian Analysis: Example
Suppose measurement Y �

i is obtained on an object
at laboratory i, and one wants to predict the value
that laboratory i0 will obtain when the same object
is measured there. To support that inference, one
can use the data on the network of reference artifact
comparisons shown in Table 1.
Exact Bayesian Solution

The �rst step is to �nd the posterior distribution
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of �. The second step is to �nd the posterior distri-
bution of ��, the true value of the object, given the
measurement Y �

i . The third step is to �nd the pos-
terior distribution of the measurement that will be
obtained at laboratory i0, given ��.
Exact Bayesian analysis �rst �nds the distribution

of � given the observations Y (in our notation, this
distribution is �(� jY ), where the bar indicates that
the distribution of the �rst argument is conditioned
on the value of the second). >From the calculus of
conditional probabilities,

�(� jY )

Z
�(�;X jY ) dX

where Bayes' theorem implies

�(�;XjY ) / g(Y j�;X)�(�;X)

/ g(Y j�;X)�(�)�(X): (2)

Here g(Y j�;X) is the distribution of Y as a function
of speci�c values of X and �|under our assump-
tions, it is just N(X�;�). The proportional signs
(/) are made into equalities by normalization, which
requires integration of the right-hand side in (2) with
respect to � and X. The factorization of �(�;X) as
�(�)�(X) uses the assumption that � and X are in-
dependent random variables. If both are, say, normal
random variables, then all terms on the right-hand
side are known, and one can solve for �(� jY ).
The second step �nds the posterior distribution of

��, given the observed value Y �

i y
�

i and the posterior
distribution �(�jY ). Using Bayes' theorem,

�(�� j y�i )
�(y�i j�

�)�(��)R
�(y�i j�

�)�(��) d��
(3)

where �(��) is the prior distribution for the analyst's
belief about the true value of the new object, and
�(y�i j�

�) is the distribution of possible observations
Y �

i for a �xed value of ��. One might reasonably
assume a normal distribution for �(��), but the dis-
tribution �(y�i j�

�) is more problematic. Recall that
at laboratory i,

Y �

i �2i�1 + �2i�
� + ��i :

If the joint distribution of �2i�1 and �2i were normal,
then calculation would be easy. But the posterior

�(� jY ) found in (2) is not normal, and numerical
solution is needed.
For the �nal step, one calculates �(y�i0 j y

�

i ). Let
Y �

i have marginal distribution f(y�i ), and denote the
joint distribution of Y �

i and Y �

i0 by g(y�i ; y
�

i0). Using
the de�nition of conditional probability and the law
of total probability gives:

�(y�i0 j y
�

i )
g(y�i ; y

�

i0)

f(y�i )

1

f(y�i )

Z
g(y�i ; y

�

i0 j�
�)�(��) d��: (4)

Under our assumptions, Y �

i and Y �

i0 are conditionally
independent given ��; thus

g(y�i ; y
�

i0 j�
�)�(y�i j�

�)�(y�i0 j�
�):

Substituting this, and a regrouping of (3), into (4)
gives

�(y�i0 j y
�

i )
1

f(y�i )

Z
�(y�i j�

�)�(y�i0 j�
�)�(��) d��

1

f(y�i )

Z
�(�� j y�i )

R
�(y�i j�)�(�) d�

�(��)

� �(��)�(y�i0 j�
�)d��Z R

�(y�i j�)�(�) d�

f(y�i )

� �(y�i0 j�
�)�(�� j y�i ) d�

�Z
�(y�i0 j�

�)�(�� j y�i ) d�
�;

where the last step follows from a second application
of the law of total probability. The second term in
the integrand is known from (3); the �rst term is
obtained from

Y �

i0 �2i0�1 + �2i0�
� + ��i0

using the joint distribution of �2i0�1 and �2i0 available
from �(� jY ). This enables a numerical solution of
the integral.
Usually one has replicated measurements on �� at

laboratory i, and it is easy to extend our analysis
to that case. The key practical diÆculty with this
approach is that numerical solutions are computer-
intensive.
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Gibbs Sampling

The numerical diÆculty of exact Bayesian calcu-
lation sparked the invention of Gibbs Sampling (cf.
Gelfand and Smith [3]), an approximation technique
that is widely used and which takes variant forms.
The large literature on this o�ers strategies for tailor-
ing the approach to speci�c problems. In the context
of this application, we focus on the main algorithm,
but note that improvement is possible.

The Gibbs Sampler is an iterative technique that
depends upon the ability to draw a random value
from a conditional distribution. To illustrate, con-
sider the posterior calculation in the �rst step
of the exact Bayesian analysis. For the initial-
ization step, set ��(0), ��(0). It is useful to
block the 2I-component vector � into I subvectors,
�1(�1; �2)

0; : : : ;�I(�2I�1; �2I)
0. Then at the t + 1th

iterate, the density of

�
(t+1)
1 is h(�1 j�

(t)
2 ; : : : ;�

(t)
I ;�(t);Y )

�
(t+1)
2 is h(�2 j�

(t)
1 ;�

(t)
3 ; : : : ;�

(t)
I ;�(t);Y )

...
...

...

�
(t+1)
I is h(�I j�

(t)
1 ; : : : ;�

(t)
I�1;�

(t);Y )

�
(t+1)
1 is h(�1 j�

(t); �2; : : : ; �J ;Y )

�
(t+1)
2 is h(�2 j�

(t); �1; �3; : : : ; �J ;Y )

...
...

...

�
(t+1)
J is h(�J j�

(t); �1; : : : ; �J�1;Y )

where h(� j �) represents a generic conditional density

function. This iterative process ensures �(t) con-
verges in distribution to a draw from the posterior
distribution �(� jY ). Repeating this iteration gen-
erates a sample from the posterior, so one can use
density estimation techniques (cf. Scott [7]) to ap-
proximate the posterior.

In our application, the modeling assumptions en-
able simpli�cation of the Gibbs sampler. For exam-
ple, conjugacy results of Lindley and Smith [5] imply
that many of the h(� j �) densities above are known
distributions that depend on only a few conditional
values.

Conjugacy Approximation

The third approach is to approximate the true dis-
tributions by a conjugate family of distributions for
which mathematical calculation is especially simple.
Usually, such approaches fail, because the necessary
approximations are inaccurate. In this case, at issue
is the approximation of the product X�, where X
and � are independent multivariate normal random
variables. Generally, this product is not normal; how-
ever, as the variance of X and/or � becomes small,
then the product approaches normality. Also, as the
mean ofX and/or � approaches 0, the distribution of
the product becomes symmetric and unimodal, which
is, broadly speaking, approximately normal.
In metrology applications, it often happens that

measurement variance is small, and that the distri-
bution of the bias has mean zero. For these reasons,
it is worthwhile to explore approximations that al-
low analytical calculation of posterior distributions
for simple conjugate families.
Discussion
This work is in its early stages, and so our con-

clusions are tentative. The chief point is that it is
important to use the entire network of common mea-
surements, rather than just a chain. This is not
an intractable problem|several statistical analyses
present themselves.
Regarding the comparison of frequentist and

Bayesian formulations, there is a degree of contro-
versy here. Some statisticians are highly partisan
members of one or the other statistical schools|our
own view is that both are legitimate, and we should
determine which approach best serves the needs of
the metrologica l community.
In this application, some of the key di�erences are:

1. Bayesian methods use prior beliefs about the un-
known quantities; this opens the door to crit-
icism that practitioners may be overcon�dent
in their measurement capability. But there are
well-established statistical methods to prevent or
discover such subjectivity.

2. Frequentist methods are inherently unable to
make statements about laboratory capability,
but Bayesian analyses can. Although it is not
the intent of these analyses to compare measure-
ment accuracy, some users may try to do so.
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3. The Bayesian analysis gives direct probability
statements about the inference, whereas the
frequentist analysis presents con�dence regions.
The latter are more diÆcult to properly interpret
in practice.

Administrators and practitioners must provide input
on these points as both methodologies are re�ned.

Another practical issue is that some of the labs in
the calibration chain will want to preserve privacy
regarding their metrological performance. A way to
achieve this is for data on key comparisons to be kept
locally, and interrogated blindly by Java applets that
are agents of the MENSOR program. This is not per-
fectly secure|an unscrupulous mathematician could
pose a series of queries that would eventually deter-
mine the hidden measurements at each site. But
this would be time-consuming, diÆcult, and easily
thwarted by small randomizations, query limits, or
denial of complete information about the algorithm.

Also, in commercial applications, many contracts
prescribe speci�c lot-acceptance plans, and MEN-
SOR should be able to handle the common ones, e.g.,
(i) Upon delivery, 10 resistors will be chosen at ran-
dom and tested, and their average must lie between
1.21 and 1.24 ohms; or (ii) Upon delivery 10 resistors
will be chosen at random and tested, and at least
9 must be between 1.21 and 1.24 ohms. In this re-
spect one could make (at least) four kinds of uncer-
tainty statements: Bayesian and frequentist predic-
tive intervals on either the actual measurements or
the di�erences between the measurements. A partic-
ularly useful statement is, for example, \MENSOR
estimates that the probability that your shipment
will be accepted when measured by the purchasers
according to the lot-acceptance plan you have speci-
�ed is .89." This is a Bayesian predictive statement
about the raw measurements.

The proposed MENSOR approach entails both po-
litical and technical components. In particular, it
requires an agreement to construct a (possibly de-
centralized) database of key comparisons, a project
that is already underway. But it o�ers an elegant
way to support international trade while avoiding the
contentious problem of declaring equivalencies among
national metrology institutes.
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